If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+x^2=248
We move all terms to the left:
3x+x^2-(248)=0
a = 1; b = 3; c = -248;
Δ = b2-4ac
Δ = 32-4·1·(-248)
Δ = 1001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{1001}}{2*1}=\frac{-3-\sqrt{1001}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{1001}}{2*1}=\frac{-3+\sqrt{1001}}{2} $
| 5(3x-1)=2x+18 | | 11x-9=12x-15 | | 11x-9=12x-5 | | 3x+0.75*x+7=5x/14 | | -1+9m=-82 | | 5h+14=84 | | 2-2v=14 | | 90/x=70/250 | | ((20+0.5x)/10)=0 | | 34+186-4x=6x | | -9x+9=-3 | | -16x*x+16x+1296=0 | | 240=2*3x+2*x | | 3(x-1)(x+3)=4 | | 70+z=71 | | 0.4y-2.5=5.5 | | 6=-(m+5) | | 5-15-25x=100 | | (((x+4)/(x-2))-((7x-8)/(x^2-8+2x)))/((-2+x)/(x+4))=1x∈R | | 2(2m+24)=3(m-2) | | 8-4x-2x^2=0 | | 0.25(4x-3)=0.005(10x-9) | | 8t+2=26 | | a-20=10 | | 3/x-2-2/x-3=4/x-3-3x-1 | | x2=32-4x | | 2+x-3=2x | | x^2-12x+96=96 | | 7/2p+11=5/3 | | (n-2)180/n=20 | | x/12-5+85=97 | | 15+2n=n |